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The bifurcation of solutions describing thermocapillary flows of a non-uniform fluid in a horizontal layer of finite thickness, under 
the influence of a temperature gradient at the free boundary is studied. On the assumption that the flow is axially symmetric 
and has no peripheral camponent, the velocities of the points of the free boundary are numerically determined as functions of 
the layer thickness and the temperature gradient. Regions of the parameters are determined in which there are either no solutions, 
or one or more solutions differing from each other in the form of their velocity profile and the number of flow and counter-flow 
zones. It is shown for tile solutions obtained that at every bifurcation point a pair of new symmetric solutions arises differing 
from the fundamental solutions by the presence of rotation about the axis of symmetry. Computation of the coefficients of the 
bifurcation equation reveals the existence of three types of bifurcation point for which the bifurcation equation in the principal 
approximation contains just two non-zero coefficients. The two-dimensional case of bifurcation is investigated. The bifurcating 
solutions are construcled asymptotically in the neighbourhood of the bifurcation points and numerically outside such 
neighbourhoods. © 2003 Elsevier Science Ltd. All rights reserved. 

Solutions describing thermocapillary flows due to a temperature gradient along the free boundary have 
been investigated in numerous publications (see, e.g. [1-6]). Analysis of the bifurcation of unsteady 
flow modes in a fluid in a thin layer, based on Prandtl's, equations, has shown that bifurcation gives 
rise to a pair of new modes with rotation about the axis of symmetry [1]. The formation of"self-rotation 
of fluid" for various classes of flows has been investigated analytically and experimentally [7]. This 
problem, which has not been studied exhaustively, is related to the formation of waterspouts, tornados, 
etc. It will be shown below that self-rotatiot, is possible in a fluid with a free layer subject to only radially 
directed tangential stresses due to non-uniform heating. 

1. We consider the problem, formulated for the Oberbeck-Boussinesq equations, of the steady 
axisymmetric therrnocapillary flow of fluid in a horizontal layer of finite thickness bounded below by a 
solid wall S and above by a free surface F, subject to a non-zero longitudinal temperature gradient 

(v, Vv) = -p- tVp + vAv - gl]T 

vVT=xAT, d i v v = 0  

p = 2 v p n F l n - t ~ ( k  I + k 2 ) + p .  ( r , z , O ) ~  1 ~ 

(1.1) 

2vp[l-In- (nFIn)n] = Vrff, T : T r,  (r ,z ,O) ~ F (1.2) 

v n = 0 ,  ( r , z ,0 )~F ;  v = 0 ,  T = T  s, ( r , z , O ) ~ S  

Here v = (v r , v 0, Vz), where r, 0 and z are cylindrical coordinates, g = (0, 0, -gt), where gt is the acceleration 
due to gravity, n is a unit vector to the free surface F, II is the strain rate tensor, 7 r  = 7 - (n, 7)n is 
the gradient along ]?, kt, and k2 are the principal curvatures of the free surface F, T is the temperature, 
v and × are the coefficient of viscosity and the thermal conductivity, respectively, p .  and Tr are the 
pressure and temperature at the free surface F, where p,  = const and Ts is the wall temperature. The 
surface tension coefficient tr is assumed to be a linear function of temperature: tr = tr 0 - [ trr I 
(T - T.), where tr 0, trT-, T. are known constants and 13 is the coefficient of thermal expansion. The axial 
symmetry conditions mean that v, p and T do not depend on the peripheral coordinate 0. 
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We will construct a solution of problem (1.1), (1.2) near the axis of symmetry, on the assumption 
that the region occupied by the fluid is a horizontal layer bounded by known planes: below by a solid 
wall z = 0 and above by a free surface z = H. The pressure at the free surface is constant. We will consider 
the case when the temperature at both boundaries of the layer depends quadratically only on the radial 
coordinate 

T r = A r r 2 / 2 + c r ,  T s = A s r 2 1 2 + c s  

where A t ,  As,  Cr, Cs are constants. This corresponds to the special case where there is a layer of stationary 
thermally conducting air above the free surface, whose temperature satisfies Laplace's.equation [6]. 
Denoting the air temperature at z = H by Tr(r), we expand the function Tr(r ) in a Taylor series in powers 
ofr.  Taking into account that we will henceforth consider the fluid flow only near the axis of symmetry 
r = 0, we will confine ourselves to two terms of the expansion. Noting that OT/Or = 0 for r = 0, we 
obtain the formula Tr = Cr + Arr2/2 (r -~ 0). 

We express the solution of system (1.1), (1.2) in the form 

v , = rF'(s)vL -2, v o = rGl(s)vL -2, u z =-2vL- t  F(s) 

T = At(O, 5r2Tt (s) + ffT2(s)) (1.3) 

p = -pv2L-4 (0, 5r2pl (s) + L2p2(s)) 

s = z l L ,  L = ( p v  2librA r l - I )  ~ 

where L is a scaling unit of length. We introduce a dimensionless parameter h = H/L. The functions 
(1.3) describe axisymmetric thermocapillary fluid flow in a horizontal layer with solid lower boundary 
z = 0 and free surface z = H. Note that this solution describes the flow near the axis of symmetry Oz 
only and does not extend to the case of large values of the coordinate r. 

Let us place the origin of the coordinate system on the free surface, introducing a variable 
= 1 - s/h, and apply a dilatation F = h24"(~), G1 = hG(O.  Substituting relations (1.3) into system 

(1.1), (1.2) and eliminating the pressure, we obtain a non-linear boundary-value problem for the functions 
dP, G, T1 

4"(4) = 2h3(~I~m + GG') + ~[h2T 

G " = 2 h 3 ( tI>G " - 4" G ) 

T[-- 2h 3 ar(4"T(- 4"T I ) (1.4) 

4,(0)=0, 4""(0)=-L T~(O)=L G'(0)=0 

4"(I) = 4''(I)= G(1)= 0, Tt(1) = x 

where x = As/Ar,  "Y = gf~4rLSv -2 are dimensionless parameters, which are assumed to be given; Pr = 
v/× is the Prandtl number. 

We will confine our attention to the caseAr > 0 ('~ > 0) only, corresponding to the case in which the 
tangential stresses at the free surface are directed toward the axis of symmetry. The functionspl,p2 and 
/'2 are determined after solving boundary-value problem (1.4);pl, in particular, is found from the formula 

p, = hl r,d  
0 

It follows from this felation and from formulae (1.3) that the pressure at the free surface ~ = 0 is 
constant for the solution under consideration. 

Let 4"0(~, h, x, 7), 00(~, h, x, 7), Go = 0 denote solutions of system (1.4) that describe fluid flows in 
which the peripheral component of the velocity vanishes (the fundamental solution). For small h values 
these solutions are obtained asymptotically by expanding the functions 4"0 and 00 in powers of the 
parameter h. In particular 

O~(0) = ~+(2~+ 3)'/h 2/240+0(h 3) (h ~ O) 
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Fig. 1. 

For finite value:~ of the parameters h, x and % solutions of system (1.4) have been obtained for 
% -- 0, 1; Pr = 7; h ~ [0, 4]; x ~ [-60, 60]. Figure 1 shows the function -/7'(0) as a function of h (note 
that the quanti ty-F'(0)  is proportional to the radial component of the fluid velocity at the free surface). 
Curves 1, . . .  , 5 correspond to the following values of the parameter x: 50, 0, -41.6072, -50, -30. For 
each • value, two branches of the curves have been computed (the layout of the curves in Fig. 1 recalls 
the picture of the phase trajectories near a saddle-type singular point). Each pair of curves has no 
common points, with the exception of the case "c = --41.6072. 

For each value ofx e [-60, -41.6072] there is a range (hi, h2) ofh values in which there are no solutions. 
Outside that range two solutions have been computed for each parameter value, but only one solution 
has been found for h = hi and h = h2. For example, hi = 1.8195; h2 = 2.4950 when x = -50. For x > 
-41.6072 two solutions have been computed for each h value. These solutions differ in the shape of the 
velocity profile. Thus, when x = 0, for the upper branch 2, the velocity profile has a flow zone near the 
free surface F and a counter-flow zone near the solid wall S. For the lower branch 2, at h < h0 - 2.7469 
the velocity profile has two flow zones (one near F, the other near S) and a counter-flow zone in between. 
At h = h0 the fluid has zero velocity at F and the flow zone near F disappears. At h > h0 the fluid flow 
zone is near S, while the counter-flow zone is near F. 

2. We will show that, for certain values of the parameters h and x, two symmetric solutions with a 
non-vanishing peripheral component of the velocity ~0 :~ 0 bifurcate from the solution ~0, %. To that 
end, we first consider the eigenvalue problem obtained by linearizing problem (1.4) near the solution 
D0, 00 

f l  (4) -- 2h3(Aofl% ~ )+ yh2tt 

t~-- 2h 3 Pr(Oot: - (~)t! + fle~) - eofl') (2.1) 

# 3 • 
gn = 2h (Oogn - O~)gn ) 

P~=O: fl=fi~=tl=g~=O; P~=I: fl=fl'--tl--'gl=O 

This problem has been investigated numerically for h ~ [0, 4]. Let h0 denote the eigenvalues of the 
parameter h. Obviously, h0 is a function of the problem parameters x, Pr and ~. Figure 2 illustrates two 
branches of the gr~tph of the function ho('C) for Pr = 7 and ~/= 0.1. For every value -52.3059 ~< x ~< 60, 
two eigenvalues h0 have been computed. For x = -52.3059 there is a double eigenvalue h0 = 2.6089, 
but for all other x values the eigenvalues are simple. The eigenvalues of problem (2.1) have been 
determined in the form gl = ~P(~), fl = 0, t 1 = 0, with q~(0) = 1. 

We will now derive the bifurcation equation for boundary-value problem (1.4), using the methods 
of [8, 9], after expressing the solution in the form 

d~ = d~ o + c~f(P~, h, x, (x) (2.2) 

G=o~g(~,h,x, tx), 0=00  +cxt(~,h,'c,(x) 
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where f, g and t are new unknown functions and ~ is a parameter  so chosen that g = 1 when ~ = 0. We 
introduce linear operators 

L = D 4 - 2 h 3 ( ~ 0  D3 + tha i )  

K = D 2 - 2h3(~o D -  ~ / )  

N = D 2 - 2 h  3 Pr(~PoD-~'ol) 

where D = d/d~ and I is the identity operator. 
Define a vector w = (f, g, t). The functionsf, g and t are determined by solving the non-linear boundary- 

value problem 

l~w --" Lf  - yh2t - 2t~3 ( f f  ' '  + gg') = 0 

Kiw =- Kg-  2oth3(fg ' -  f ~ )  = 0 (2.3) 

Niw =- Nt - 2h 3 Pr(f0~ - 0 0 f '  - 2ff.h 3 Pr(ft '  - tf ')  = 0 

~=O: f=f '=g '= t=O;  ~ = l : f = f = g = t = O  

For a = 0, h = ho(x), problem (2.3) has the solution g = 9(~), f = 0, t = 0, since it is then identical 
with eigenvalue problem (2.1). 

Consider the Cauchy problem 

Ltw=O, K i w = 0 ,  Niw=O 

~ = 0 :  f=O,  f ' = P l ,  f"=O, f " = P 2 ,  t=O, t'=P3, g=l ,  g ' = 0  (2.4) 

The parameters Pl, P2 and P3 are as yet unknown and will be found by satisfying the boundary 
conditions in (2.3) at the solid wall, ~ = 1. 

I fh  = h0, a = 0, the Cauchy problem (2.4) has the solution g = q~(~),f = 0, t = 0,p 1 = P2 =P3 = 0. 
Let us investigate the solution of this problem for parameter values (h, or) near (h0, 0). These solutions 

obviously solve boundary-value problem (2.3) if and only if the functions f, g and t satisfy the boundary 
conditions in (2.3) at ~ = 1 

f(l,o~,h, pl,p2,P3)=O, f'(1,ot, h, pl,p2,p3)=O 

t(l,ot, h, pi,p2,P3)=O, g(l,~,h,p;,p2,p3)=O (2.5) 

The parameterspl,P2 andp3 are uniquely determined from the first three equations of system (2.5)only 
if the Jacobian D(f, f', t)/D(pl, P2, P3) does not vanish. Numerical computations have shown that this 
is the case for all values o fh  in the range [0, 4] except the point h = h. = 2.4806 and x = x. = -49.2231, 
at which the Jacobian vanishes. 
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Suppose h 4: h,, x 4: x.. By determining the parameters Pl, P2 and P3 from the first three equations 
of system (2.5) and substituting them into the fourth equation, we obtain the bifurcation equation 

b(ot, h) - g(I, or, h, Pl (or, h), P2 (or, h), P3 (5, h)) = 0 (2.6) 

Using standard techniques (see [8]), we expand the function b(et, h) in a finite Taylor series in the 
neighbourhood of the point ot = 0, h = h0 

b(ot, h) = b(O, ho) + (h - ho)b h +txb a + tx2b~ta/2+ . . . .  0 (2.7) 

where bh, b , ,  b,~, denote the derivatives of b(a, h) with respect to h and oL, evaluated at the point 
¢t = 0, h = h0. 

Let us compute the coefficients of series (2.7). We will first show that b(0, h0) = 0. To that end, we 
let ot ~ 0, h ---> h0 in Eq. (2.6), in the Cauchy problem (2.4), and take into account that f = f '  = t = 
g = 0 when ~ = 1. Investigation of these problems yields g = ~(0 ,  Pl = P2 = P3 = 0 when tx = 0 and 
consequently b(0, h0) = ~o(1) = 0. 

Analogous reasoning yields b,  = 0 in (2.7). 
We now find the coefficient b h in (2.7), using the relation 

a g  . ~ ag /ap, 
bh = - - +  L (o t=O,h  = ho) 

~h ,=j ~p, /~h 

Note that Og/OFk = 0 (e~ = O, h = ho). This follows from an investigation of the Cauchy problem 
obtained by differentiating the equations and boundary conditions in (2.4) with respect to the parameters 
Pk. Differentiating Eqs (2.4) with respect to h and letting c~ --> 0, h ---> h0, we obtain a Cauchy problem 
for gh = Og/Oh 

Kg,  = 2h~ (g~'oh - g '~oh  ) + 6h~ (~og" - ~og) 

g = 0 :  g ,=O.  g ; = O  

The function ~0h is determined from the boundary-value problem 

L@o, = "t,h~0o. + 6 h ~ o ~ ' q -  2"t'ho0 o 

N0o  = 2 g  P ( ,o 0g - + *oOg - a, 0o) 

~, = 0 : ~Oh = O~'h = Ooh = O; g = I : OOh = O [ h  = Ooh = 0 

The problems obtained for gh, ~Oh, Ooh are solved numerically. The solid curves in Fig. 3 represent 
the coefficient bh against the parameter h. Note that bh ---) +- oo as h --) h, = 2,4806. In addition, 
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bh = 0 when h = 2.6089. In the range (2.4806, 2.6089) the coefficient bh is positive; outside that range 
it is negative. Curves 1 and 2 in Fig. 3 correspond to x and h values belonging to the bifurcation branch 
1 of Fig. 2. For branch 2 (Fig. 1) the corresponding values of the coefficient b h are strictly positive (not 
shown in Fig. 3). 

We will now determine the coefficient b, ,  in (2.7), noting that b~  = O2g/OoLa when et = 0, h = h0, 
= 1. The function g ~  is found by numerical solution of the Cauchy problem 

Kgaa = 4h~( fag ' -  fdg) 

g~a =0, g ~ = 0  ( [ = 0 )  

A boundary-value problem for f~ is obtained by replacing the functions fl, tl and gl in (2.1) by 
f~, t~, ~, respectively, and adding the term 2h 3 ~ '  to the right-hand side of the first equation. The 
problem for g ~  is solved numerically. 

The dashed curves in Fig. 3 (curves 3 and 4) represent graphs of b~  (h)/10 as a function of h. Note 
that b~  --~ _+ ~ as h ~ h. -7- 0. We have b~  = 0 when h = 3.3419 and • = -20.831. Note that b,~ < 0 
in the range (2.4806, 3.3419) and b~  > 0 outside that range. Curves 3 and 4 (Fig. 3) were computed 
for x and h values belonging to the bifurcation branch 1 of Fig. 2. Plots of b, ,  for • and h belonging to 
the bifurcation branch 2 of Fig. 2 are not shown. Note that the corresponding values of the coefficient 
b~, are strictly positive. 

Now, use of the Newton diagram [9] enables the following parameter value to be obtained from 
Eq. (2.7) 

(X =-1"42(//0 - h ) b  h/bo.oL' +... (h --> 11o) (2.8) 

The coefficient 2bh/b,~,~ in formula (2.8) has been computed numerically. 
In Fig. 4 the coefficient 2kbh/baa is plotted against the parameter h (where k is given the values 0.1, 

1 and 10 for branches 1, 2 and 3, respectively). Formula (2.8) is not valid for h = 3.3419, where 
b,~ = 0. When h = 2.6089 we have b h = 0. Consequently, formula (2.8) is again not valid. Note that 
bh ~ +- 0% b,~, ~ +- ~ as h ~ h. = 2.4806, but the quotient 2bh/b~,~ has a finite limit -0.17365. Thus, 
formula (2.8) fails to hold in the above three exceptional cases. This analysis will be continued later. 

Note that the solutions bifurcate to ~.'ae side h < ho(x) for values of (x, h) belonging to the bifurcation 
branch 2 of Fig. 2, and also for values of (% h) belonging to branch 1, in the range h e (2.6089, 3.3419). 
Solutions bifurcate toward h > h0 for values of (% h) belonging to branch 1 of Fig. 2 in the ranges 
h E (0, 2.6089) and h e (3.3419, 4). 

3. We will now construct asymptotic formulae, valid in the neighbourhood of values of h0(x), for 
solutions that bifurcate from the fundamental solution qb0, 00 towards h > ho. Points with values 
h. = 2.4806, hi = 2.6089, h2 = 3.3419 will be excluded from consideration. Introducing a small parameter 
el -" ~/(h - h0), we express the solution of problem (1.4) as el --~ 0 in series form 

2b~/ba~ 

/ 
- 1 0  

2 3 4 
h 

Fig. 4. 
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a, = ~0o +e,Yl + ~ ( f 2  + ~o2)+. . .  

G = Eigl + E~g2 +e~g3 +. . .  (3.1) 

T~ =%0 +E:~ +e~(t2 +02)+ . . .  

~00 = ~0(~,h0(x),x,~,), 00o(~,h0(x),~') 

~o2 =O~/3h, 002 =30/3h (h=ho(x)) 

We substitute series (3.1) into system (1.4) and equate the coefficients of e k (k --- 0, 1, 2 . . . .  ) to zero. 
This gives the eigenvalue boundary-value problem for fl, gl and tl obtained from (2.1) by replacing ~0, 
00 and ho by ~00, 0~), ho(x), respectively. The solution of this problem is obtained in the formg 1 = cl~p,(~), 
fl = 0, t I = 0. In the second approximation, the functions f2, t2 and g2 are expressed as f2 = c~f~, 
t2 = c2t~, g2 = c2~p(~), where the functionsf~ and t~ were determined previously, when computing the 
coefficient g,= in the bifurcation equation. The coefficients cl(x) and c2(x) are found from the solvability 
conditions for the boundary-value problems in the third and fourth approximations. 

Investigation of the boundary-value problem for the function g3(~) yields the formula Cl z = -2bh/b~,, 
where b~, b h are  the coefficients in formula (2.8), which have already been determined numerically. 

Note that the branches below the abscissa axis in Fig. 4 plot the coefficient -c  2 against the parameter 
g in this case. 

Asymptotic formulae for the solutions that bifurcate from ~0, 00 for h < h0 are constructed using 
formulae (3.1) by :replacing el in these formulae by e2 = ~/(h0 - h). Now cl = 2bh/b~. The branches 
above the abscissa axis in Fig. 4 represent c~ against h. 

4. At the singular point x = -20.831, h = 3.3419, the coefficients of the bifurcation equation are 
computed by the standard technique described in [8]; the equation itself may be reduced to the form 

(h - hi) )b h -F 0~4b4 / 24 +... = 0 

Numerical computation gives the formula 

ct = +0,5136(h-  ho) ¼ + .... (h --, ho) 

Thus, for x = -20.831, h0 = 3.3419, two symmetric solutions bifurcate from the fundamental solution 
towards h > h0. The bifurcating solutions are constructed numerically. Computations have shown that 
when x --- -20.831 the solutions bifurcating from the fundamental solution at h = 3.3419 meet again 
and are identical with the fundamental solution for h = 2.2590 at the other bifurcation point. 

Curves 1 and 2 in Fig. 5 represent the fundamental solution, and curve 3 a bifurcating solution. The 
layer thickness h is plotted along the abscissa axis, and F'(O) - which is proportional to the radial component 
of the velocity at the free surface - along the ordinate axis. A1 is a singular point at which h 0 = 3.3419. 
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5. We will now consider the point with coordinates h* = -52.3059, ~* = -52.3059, at which bh = O. 
Note that here b~h = 0. The principal terms of the bifurcation equation are 

o~2bQa +(h-h ' )2bhh  + . . . .  0 (Ot--->O, h--> h ' )  (5.1) 

Numerical computation of the coefficients in (5.1) gives b ~  = -30.800, bhh = -21.9270. This means 
that Eq. (5.1) has no real roots. Consequently, no solutions bifurcate from the point (h*, ~*), 

Curves 1 and 2 in Fig. 6, plotted in the plane of the parameters (h, -F ' (0)) ,  respectively represent 
the fundamental solution and the bifurcating solution for z = --49.22, which is near ~*. As ~ ---> "c* the 
bifurcation pointsA1 andA2 approach one another, merging at x = ~*, whereupon branch 2 disappears. 

6. Let  us consider the point for which h = h, = 2.4806 and x = • • = --49.2231. For the point 
D( f , f ' ,  t)/D(pl,P2,P3 ) = 0, andf,  f '  and t are determined from (2.5). In addition, b h ---> ± 0% b ~  ~ +_ oo 
as h ---> h,, x 4-4 x,. Note that at that point the eigenvalue problem (2.1) has a solution different from 
that described in Section 2. Namely, the eigenfunctions of problem (2.1) are now found in the form 
fl = ~(~), tl = F(~), gl = tp(~), with normalization condition ~'(0) = 1. Computations yield the values 
tp'"(O) = -10.8968 and F'(0) = 135.4008. The function ~'(~) has only one zero in the range [0, 1]. 

We will now construct asymptotic formulae for the fundamental solution qb0(~), 00(~) in the 
neighbourhood of the point (h,, x,). We put dp'(0) = p and switch the parameters h andp, that is, consider 
p as given and h as subject to determination. We define a small parameter  e = p - p , ,  wherep ,  = 0.2387 
- the value o f p  at h = h, and x = ~,. We expand the functions qb 0, 00 and h in powers of e 

Oo = Ooo(~)  + eOo~ (~) + . . . .  h = h, + eh~ + e2h2 + . . .  (6.1) 

An analogous series is constructed for the function 00, with coefficients 000, 001 . . . . .  The functions 
q~00 and 000 were determined previously from system (1.4) with h = h, and x = z,, and the graph of the 
function h~0(0)  is curve 1 in Fig. 6. Higher-order approximations are found by solving linear boundary- 
value problems. The principal terms of the asymptotic series as h ---> h,, • ---> x, are 

~Po(~,h ) = dPoo(~,h ) + ~/( h - h, ) l ~l ~ll(~) + O( h - h, ) 

0 o (~, h) = 0oo (~, h) 5: ~/fh - h.) / 15] F(~) + O(h - h.) 

The value of 131 = 83.1127 was found numerically. Hence it follows that ~ 0 / ~ h  ---> ± ~o, ~0o/~h ---> 
+ oo ash ---> h,, ~---> z,. 

We will now set up the bifurcation equation for h = h, and ~ = "c,. Put p = qb'(0) and switch the 
parameters h and p. The functions qb, 0 and h admit of representations 

-F'(0) 
0.65 

0.60 

0.55 

A2 

2.5 2.7 2.9 
h 

Fig. 6. 
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# = p) + af(g,  p, cx), 

o = ooCg, p) + ou(g, p, a),  

G = otg(~, p, (x) 

h = h , (p )  + ff/-/(ot, p)  
(6.2) 

given that g = 0 (E = 1), We now derive a non-linear boundary-value problem for the functions f, g 
and t. Applying the method described in Section 2, we formulate a Cauchy problem to determine the 
functions f, g and t. Define parameterspl  = f ' " (0) ,p2  = t'(0). Now, assuming the boundary conditions 
to hold at the solid wall (6 = 1), we obtain the relations 

f ( l ,  ot, p t , p 2 , p ) = O ,  f ' ( l , o ~ , p t , p 2 , p ) = O  

(6.3) 
t(1,ot, p l , p 2 , p ) = O ,  g(l, ot, p l , p ~ , p ) = O  

N u m e r i c a l  compu ta t i ons  yie ld  

D ( f , f ' , t ) l  D(p,  p l , p2 )=O,  D ( f , f ' ) l  D ( p t , p 2 ) ~ O  

We now use the method described in [9] to investigate the two-dimensional case of bifurcation. The 
bifurcation equation may be reduced to the form 

(p - p,)bp + o~2baa / 2 +. . .  = 0 

The last equation ihas two solutions 

ct = +1,2506~/-p - p, + ... (p ---> p.)  

Thus, two new solutions bifurcate from the point with coordinates h = h,, x = x,; they differ from 
the fundamental solution by the presence of a peripheral component of the velocity. Curve 1 in Fig. 6 
represents the fundamental solution (v0 = 0) and curve 2 represents the bifurcating solution. The point 
corresponds to the values h., x,. 
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